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Abstract

A numerical study of a steady laminar magnetohydrodynamic (MHD) flow driven by a rotating disk at the top of a

cylindrical cavity filled with a liquid metal is presented. The fluid flow field was calculated using a finite volume

computational fluid dynamics (CFD) model. The effects of the magnetic field, the fluid and wall electrical conductivities,

and the wall thickness are investigated. The relevant key parameters for the MHD flows are the Hartmann number M ,

and the Reynolds number Re. The study was performed for various ReP 100 and for M in the range 06M 6 100. This

corresponds to a range of interaction parameter N ¼ M2=Re of 06N 6 100. Here the magnetic Reynolds number Rm is

assumed to be very small but the small-induced magnetic field was taken into account in the formulation of the

problem. The work focuses on thin walls, which simplifies the boundary conditions. The thin wall boundary condition is

used for the first time for a moving wall. It is shown that for fixed values of the Hartmann and Reynolds numbers, the

velocity distribution depends strongly on the conductance ratio k, in spite of the fact that, the Hartmann layer thickness

and side layer thickness do not vary with k. The numerical model is also applicable to non-MHD flows, and gives good

agreement with previous experiments. The study is destined to predict the influence of a magnetic field on the corrosion

rate of a liquid metal on a metallic wall. The results are devoted to analyse the corrosion processes of stainless steels by

the Pb–17Li liquid alloy for the fusion reactor. It is assumed that this corrosion is controlled by the near-wall

hydrodynamic which is then controlled by an external magnetic field. The concentration equation for the corrosion

product is solved, and predicts the evolution of the mass transfer with M . At same magnitude of M the mass transfer is

higher for conducting than insulating walls.

� 2003 Published by Elsevier Ltd.
1. Introduction

In the water-cooled blankets for fusion reactors,

which use a strong magnetic field to confine the plasma,

the liquid alloy Pb–17Li has been proposed as breeder

material. During operation, structural materials consti-

tuting the duct wall of the blanket, such as austenitic and

martensitic steels, exposed to Pb–17Li are subject to

corrosion [1]. The corrosion depends on factors such as

time, temperature, liquid and solid compositions, ther-

mal gradients and hydrodynamics. As in electrochem-

istry, it is expected that this last parameter can greatly

affect the mass transfer from the solid to the liquid phase
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via the velocity gradient at the solid–liquid interface. It

is also well known that a magnetic field changes the

velocity distribution in liquid metal duct flows. There-

fore, corrosion of steels exposed to flowing Pb–17Li may

be modified by the magnetic field used to confine the

plasma.

The confirmation of this magnetic field hypothesis

requires an accurate knowledge of the correlation be-

tween hydrodynamics in a magnetic field and the rate of

the mass transfer. To achieve that goal, an experiment

will be performed to measure the corrosion of a rotating

electrode (of the same material which will be used for the

blanket) generating a re-circulating motion in a cylin-

drical cavity subjected to a strong magnetic field. The

influence of a magnetic field on the electrodeposit-

ing mass transfer processes is well known from the



Nomenclature

B0 axial imposed magnetic field [T]

b�h induced tangential magnetic field [T]

bh dimensionless induced tangential magnetic

field [–]

D diffusivity of the corrosion product [m2/s]

ew wall thickness [m]
~FF Lorentz force [kgm/s2]

H height of the cylinder (see Fig. 1) [m]

k conductance ratio [–]

M Hartmann’s number [–]

N interaction parameter [–]

jr radial electric current [A/m2]

jz axial electric current [A/m2]

jh tangential electric current [A/m2]

Jr dimensionless radial electric current [–]

Jz dimensionless axial electric current [–]

Jh dimensionless axial electric current [–]

It dimensionless total current [–]

p� pressure [kg/(m s2)]

P dimensionless pressure [–]

R radius of the cylinder (see Fig. 1) [m]

Re Reynolds number [–]

Rm magnetic Reynolds number [–]

r� radial coordinate [m]

r dimensionless radial coordinate [–]

Sc Schmidt number [–]

Sh Sherwood number [–]

ur radial velocity [m/s]

uh azimuthal velocity [m/s]

uz axial velocity [m/s]

Ur dimensionless radial velocity [–]

U dimensionless axial velocity [–]

Uh dimensionless azimuthally velocity [–]

z� height coordinate [m]

z dimensionless height coordinate [–]

Greek symbols

m kinematic viscosity [m2 s�1]

l magnetic permeability [kg�1 m�1 s�1]

q fluid density [kgm�3]

rf fluid electrical conductivity [Xm�1]

rw wall electrical conductivity [Xm�1]

X rotating disk angular velocity [rad s�1]

x core flow angular velocity [rad s�1]

u dimensionless electric potential [–]

W dimensionless electric streamfunction [–]

d Hartmann’s layer thickness [–]

dk parallel layer thickness [–]

D Laplacian operator

Dr grid increment in the radial direction [–]

Dz grid Increment in the axial direction [–]
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electrochemists [2–4] and from the crystal growth spe-

cialists [5,6]. Considering the simple geometry used to

perform experimental tests, the first step of this work is

to determinate the flow pattern in such a cavity.

Numerous papers have been published on the study of a

viscous liquid flow driven by one or two rotating disks

without magnetic field [7–9]. The cases of a disk driven

flow in a cylindrical enclosure mainly focus on small

aspect ratio (H=R � 1) [10], this configuration being

more representative of the structure of many hydraulic

machines (turbines, centrifugal pumps, etc.). When the

aspect ratio is greater than 1, as in the present work

(H=R ¼ 2), the influence of the lateral walls on the flow

can no longer be neglected. The corresponding magne-

tohydrodynamic (MHD) problem has not been studied

in detail up to now. Only two papers could be found in

the literature [11,12], and both cover describe asymptotic

flow solutions with a strong axial magnetic field.

The present work describes the numerical analysis

used to predict the velocity distribution in a cylindrical

cavity with a rotating end wall under an axial magnetic

field. It is shown that the velocities depend on the

thickness and the electrical conductivity of the walls. For

thin walls the significant parameter is the conductance
ratio k, the ratio of the wall conductance to the liquid

metal conductance. Bessaih et al. [11] have only inves-

tigated the simple cases of an electrically insulating wall

(k ¼ 0) and a perfectly conducting wall (k ¼ þ1). But,

according to Molokov [13,14] the conductance ratio k
has a very high influence on the flow pattern. The

present work demonstrates the influence of the wall

properties (thickness and electrical conductivity) on the

velocity distribution. In a second part, the distribution

of the velocity in the cavity is used to solve the con-

vection diffusion equation which is assumed to control

the mass transfer rate. Consequently, the influence of the

magnetic field on the corrosion rate will be analysed

through the modification of the flow configuration in-

side the cavity.
2. Formulation of the hydrodynamics problem

Let us consider an incompressible, viscous, and

electrically conducting fluid contained in a cylindrical

cavity of radius R (Fig. 1) submitted to an axial magnetic

field B0. The top wall of the cavity is rotating with an

angular velocity X are constant. The fluid properties as



Fig. 1. Geometry of the considered problem. Because of the

thin wall hypothesis the solid regions is not included in the

calculation domain.
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density (q), kinematics viscosity (m), and electrical con-

ductivity (rf ) are assumed to be constant. The magnetic

permeability (l) is the same everywhere (l ¼ l0). All

walls of the cavity have the same thickness (ew) and

electrical conductivity (rw).

The problem is expressed in cylindrical coordinates

(r�; h; z�) under the hypothesis of axial symmetry

(o=oh ¼ 0) and stationary flow condition (o=ot ¼ 0). The

magnetic Reynolds number, with a typical velocity V0
defined latter, is small (Rm ¼ rflV0R � 1), so that the

applied magnetic field B0 is not significantly affected by

the induced magnetic field ~bb�ðb�r ; b�h; b�z Þ which is gener-

ated in the fluid by the induced electric current
~jjðjr; jh; jzÞ. Consequently, to the first order the Lorentz

force applied to the flow can be written as

~FF ¼~jj�~BB0 ¼
B0jh;
�B0jr;
0:

8<
: ð1Þ

Here~jj can be expressed from Ampere’s relation as

r� b
*�

¼ l~jj ð2Þ

or, from the Ohm’s law to first order, which consists of

neglecting the induced magnetic field

~jj ¼ rfð~EE� þ~uu�~BB0Þ: ð3Þ

Here ~EE� is the induced electric field. The electric current

which controls the Lorentz force, is deduced from Eqs.

(2) or (3) as
~jj ¼

jr ¼ � 1

l
ob�h
oz�

¼ � 1

l
1

r�
o

oz�
ðr�b�hÞ;

jh ¼ �rfB0ur;

jz ¼
1

l
1

r�
o

or�
ðr�b�hÞ:

8>>>>><
>>>>>:

ð4Þ
It is clear from Eq. (4) that the tangential component of

the induced magnetic field, i.e. b�h, appears as the stream
function of the radial and axial component of the in-

duced electric current, jr, jz. The expression for jh is

deduced preferentially from the Ohm’s law by taking

into account that the azimuthally component of the

electric field, E�
h ¼ � 1

r�
ou
oh, where u is the electric poten-

tial, vanishes under the axial symmetry. Consequently,

using the formulation (4), only the tangential compo-

nent of the induced magnetic field is relevant to the

description of the problem. This component can be de-

duced from the induction equation written to the first

order as

B0

ouh
oz�

þ 1

lrf

Db�h

�
� b�h
r�2

�
¼ 0: ð5Þ

On the hydrodynamic point of view, the problem is

governed by the classical Navier–Stokes equations
Ur
oUr

or�
þ uz

our
oz�

¼ � 1

q
op�

or�
þ m Dur

�
� ur
r�2

�
� 1

q
B0Jh

þ uh2

r�
; ð6Þ

ur
ouh
or�

þ uz
ouh
oz�

¼ m Duh
�

� uh
r�2

�
� 1

q
jr � B0 �

uhur
r�

; ð7Þ

ur
ouz
or�

þ uz
ouz
oz�

¼ � 1

q
op�

oz�
þ mDuz ð8Þ

and by the continuity equation

o

or�
ðr�urÞ þ r�

ouz
oz�

¼ 0: ð9Þ

The set of equations (4)–(9) will be used to describe

the flow configuration inside the cavity. (10) is the mass

transfer coefficient which will be computed when the

hydrodynamic will be known. By choosing the following

characteristic typical scales: for the length l0 � R, for the
velocity V0 � m=R, for the electric current density

J0 � rfV0B0, for the pressure P0 � qV 2
0 , and for the

magnetic field b0 � lrfV0B0R ¼ RmB0 and by using the

following dimensionless parameters: r ¼ r�=R, z ¼ z�=R,
U
*

ðUr;Uh;UzÞ ¼~uuður; uh; uzÞ � R=m, p ¼ p�=ðqV 2
0 ) and bh ¼

b�h=ðB0Rm); the dimensionless equations that control the

flow field take the form
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Ur
oUr

or
þ Uz

oUr

oz
¼ � oP

or
þ DUr

�
� Ur

r2

�
�M2 � Ur þ

U 2
h

r
;

ð10Þ

Ur
oUh

or
þ Uz

oUh

oz
¼ DUh

�
� Uh

r2

�
þM2 � obh

oz
� Ur � Uh

r
;

ð11Þ

Ur
oUz

or
þ Uz

oUz

oz
¼ � oP

oz
þ DUz; ð12Þ

o

or
ðrUrÞ þ r

oUz

oz
¼ 0; ð13Þ

oUh

oz
þ Dbh

�
� bh

r2

�
¼ 0: ð14Þ
In this set of equations, the components of the cur-

rent density have been replaced by their expressions

deducted from (4). The problem seems to be controlled

only by the Hartmann number M ¼ B0Rðrf=mÞ1=2, the

ratio of electromagnetic force to the viscous force. In

fact, due to the choice of the typical scales, the Reynolds

number appears only in the expression for the boundary

conditions (cf. (15)) and the magnetic Reynolds number

only in the expression for the induced magnetic field

(bh ¼ b�h=ðB0RmÞ). The mass transfer is controlled by the

Schmidt number Sc ¼ m=D.
Two others parameters control the structure of the

flow:

• The aspect ratio H=R, see Fig. 1. This study will be

focused mainly on H=R ¼ 2 corresponding to the

available facility.

• The electric properties of the walls taken into account

by the conductance ratio k ¼ rwew=rfR to be intro-

duced later in the electric boundary conditions.

The interaction parameter N ¼ M2=Re, the ratio of

electromagnetic forces to inertial forces, is deducted

from the Hartmann and Reynolds numbers.
Fig. 2. The closure of the electric current in the rotating disk.
3. The boundary conditions

3.1. Hydrodynamic conditions

The velocity field must satisfy the non-slip condition

at the walls. These conditions are summarized by:

• At the surface of the rotating disk (z ¼ 0)

Ur ¼ Uz ¼ 0; UhðrÞ ¼ r � X=V0 ¼ Re � r: ð15Þ

• On the lateral and bottom walls of the cavity,

Ur ¼ Uh ¼ Uz ¼ 0: ð16Þ
• In addition, from the symmetry on the axis of the

cavity (r ¼ 0):

oUr

or
¼ oUz

or
¼ 0; Uh ¼ 0: ð17Þ
3.2. Boundary conditions for the induced magnetic field

The closure of the electric current depends strongly

on the wall electric properties (thickness and conduc-

tivity). Consequently, the Lorentz force and the velocity

distribution are governed by these properties. Depend-

ing on the thickness, electrical conductivity, and mag-

netic permeability of the walls, numerous possible

combinations of hydrodynamic and electromagnetic

boundary conditions can be written. The electromag-

netic boundary conditions depend on the conductivity

ratio and the ratio of the wall thickness to the fluid ra-

dius R. In the general case these two ratios do not play

the same role, but when the wall thickness is much

smaller than the radius of the cavity, the expression for

the boundary conditions is simplified. In the present

work only the electric properties are taken into account

and the focus is on thin walls. As will be demonstrated

below, the thin wall hypothesis avoids having to solve

the induction equation (14) in the solid media.

The thin wall hypothesis assumes that the electric

potential does not vary across the wall; this means that

the wall current density is tangential to the wall. In this

case the significant parameter is the conductance ratio

k ¼ rwew=rfR;, thus the wall thickness (ew) and wall

conductivity (rw) play a similar role. The thin wall has

never been used for a moving wall, the boundary con-

ditions at the rotating lid has to be established.

Let us consider the interface between the rotating

disk and the liquid metal. The magnetic boundary con-

ditions can be deducted from the conservation of the

electric current between the fluid and a circular corona

of the wall of dimensionless size dr, thickness ew=R and

radius r (Fig. 2). The vertical component of the current
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density Jz in the fluid, at the interface with the disk has

to close inside the thickness of the disk, causing a change

in the radial component Jr of the electric current. By

using respectively the superscripts (w) and (f) for the

wall and the fluid, the electric conservation equation is

J f
z ¼ � ew=R

r
o

or
ðrJw

r Þ: ð18Þ

The continuity of the electric potential at the wall

imposes the continuity of the radial component of the

electric field. That means that at the disk surface:

8r : Ew
r ¼ Ef

r : ð19Þ

Consequently, taking into account of the Ohm’s law

(3),

8r : Jw
r

rw=rf

¼ J f
r : ð20Þ

The rotating velocity of the upper disk closing the

cavity is implicitly taken into account in the formulation

of the problem. For J f
r using the continuity equation

(~rr �~JJ ¼ 0), Eq. (18) gives:

J f
z ¼ k

o

oz
ðJ f

z Þ: ð21Þ

The dimensionless form of the Eq. (4) combined with

Eq. (21) gives:

8r : oðrbhÞ
or

¼ k
o

oz
oðrbhÞ
or

� �
: ð22Þ

By integrating between r ¼ 0 and r we obtain the

final expression for the magnetic boundary condition at

the disk interface

bh ¼ k
o

oz
ðbhÞ: ð23Þ

As it can be see the mobility of the rotating disk does

not induce a modification of the boundary condition.

This is connected to the no slip boundary condition for

the velocity between the two media. At the others walls,

using the same procedure as for the rotating disk, we

obtain:

• For the boundary condition at the bottom wall

bh ¼ �k
o

oz
ðbhÞ ð24Þ

• and for the lateral wall

bh ¼ �k
1

r
oðrbhÞ
or

: ð25Þ

Thus, all the electric boundary conditions at the so-

lid–fluid interface can be expressed by a general relation

of the form
bh ¼ v
obh
on

; ð26Þ

where n is the vector normal to the wall into the liquid,

and v is a function of k. By using relation (26) the

calculation of the induced magnetic field is not neces-

sary in the wall media for thin walls hypothesis. Thus

the problem needs to be solved only in the conducting

liquid. On the experimental point of view, the electric

contact between the rotating disk and the lateral part

of the cavity, which is not moving, can be considered

with attention. Inside this gape (of size e=R < 10�3),

Fig. 2, the fluid is in a Couette configuration and the

vertical gradient of velocity oUh
oz is null along the depth

of the rotating disk. Consequently there is no source to

be added for the induction equation of bh. The mod-

elling of real case can easily be done by changing the

conductance ratio of the lid by k ¼ ew=R for

1� e=R6 r6 1. It is assumed this has a small influence

on the global dynamic of the flow. The present study

assumes a perfect contact between the rotating disk and

the fix lateral walls.

The conductance ratio k plays a very important

role in the velocity distribution. Generally the MHD

flows have been treated only under the asymptotic

conditions [11], the walls being either perfectly con-

ducting (k ¼ 1) or insulating (k ¼ 0). Using the pres-

ent At the rotation axis of the disk, the symmetry

conditions leads to
bhðr ¼ 0; zÞ ¼ 0: ð27Þ
4. Numerical results and discussion

The numerical tool used, FLUENT, is a finite vol-

ume code coupled to a pressure correction equation

based on the SIMPLEC algorithm. The different quan-

tities associated with the set of equations are discretised

on a unique rectangular grid and solved on the (r; z)
plane. For the discretisation of spatial terms a second

order UPWIND difference scheme was used. The solu-

tion in the meridian plane r–z was obtained as follows:

(a) Eq. (11) is first solved to get Uh.

(b) bh is subsequently computed from Eq. (14).

(c) Next Eqs. (10), (12) and (13) are solved to get P , Ur

and Uz.

(d) Steps (a) to (c) are repeated until convergence is

obtained.

The increments Dr and Dz of the grid are not regular,

in the Ekmann and Hartmann layers a strong refinement

was made to solve the specific characteristic of the flow

and to reduce the numerical errors. The grid used has
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120· 280 nodes and was chosen after performing grid

tests. As mentioned before, when the Harmann number

is sufficiently high (M2 > Re), the flow configuration

depends essentially on the interaction parameter that,

for a fixed Re, varies from 0 to 100 in the present study.

The velocity profiles are presented essentially for Re ¼
100, because the boundary layer profiles are better de-

fined.

4.1. Solution without magnetic field

The problem has been investigated for different val-

ues of the aspect ratio H=R. The main conclusion is that

the boundary layer at the rotating disk results from an

equilibrium between the centrifugal and viscosity forces.

The centrifugal force generates a high-pressure zone at

the periphery of the rotating disk. This high-pressure

zone entrains flow in the cavity that closes in the low-

pressure zone on the axis. This phenomenon is well

known as Ekmann pumping. When the Reynolds num-

ber is high enough to entrain all of the fluid contained in

the cavity (ReP 1000), the calculations predict that the

central core of the flow rotates with a constant angular

velocity x which depends only on the aspect ratio and

not on the Reynolds number For small aspect ratios the

result is x � X=3, confirming the studies done by Lew-

ellen [8] (Fig. 3). In contrast with the semi-analytical

study by Tholman [7], when the aspect ratio becomes

larger than 1, the ratio between the angular velocity of

the disk and the angular velocity of the core flow seems

to follow an asymptotic linear law X=x ¼ 1þ 2 � H=R
(Fig. 3). This is confirmed experimentally by results ex-

tracted from Spohn [10,17] for different ratio aspects. In

particular for H=R equal to 2, corresponding the present

facility, there is an excellent agreement.
Fig. 3. Angular velocity ratio of the disk X to the core flow x
versus the aspect ratio for M ¼ 0.
4.2. Solution with a magnetic field, insulating and

perfectly conducting walls

The solutions without a magnetic field is used as the

initial condition for the MHD case. As mentioned be-

fore, for high values of the Hartmann number the grid

needs very strong refinement to yield good precision in

the vicinity of the walls.

The cases of insulating and perfectly conducting

walls have been investigated by Bessaih [11] only for

asymptotic values of the Hartmann number, while the

present study covers all values of this parameter. The

method used by this author is different that used in

the present paper. It is based on the electric potential

distribution at the wall, while the present work uses the

induced magnetic field. The comparison of results ob-

tained with both methods (Fig. 4) does not show any

difference, thus confirming the validity of the present

approach.

For electrically insulating walls, the boundary con-

ditions on the solid–fluid interfaces and on the axis have

the simple form bh ¼ 0. The induced electric current

lines characterised by the function w ¼ rbh, do not

penetrate the walls and must close inside the conducting

liquid, as shown in Fig. 5 for M ¼ 100. The regions lo-

cated just under the rotating disk and just above the

bottom disk correspond to a concentration of the elec-

tric current lines perpendicular to the magnetic field B0.

As a result, in these locations the Lorentz force is large.

Thus, when the Hartmann number increases, the Ekman

layer characterised by an equilibrium between the cen-

trifugal and viscous forces is progressively replaced by

the Hartmann layer characterised by an equilibrium

between electromagnetic and viscous forces. The ana-

lytic solution for large M calculated by Bessaih [11],
Fig. 4. Comparison between Bessaih’s results and present re-

sults for perfectly conducting and insulating walls, M ¼ Re ¼
100 and H=R ¼ 1.



Fig. 5. Electric current streamlines for insulating walls

(Re ¼ M ¼ 100). The iso-values of (�W) are indicated in the

meridian plan (r; z).
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shows that the flow is rotating as a rigid body at half of

the velocity of the rotating disk, Uh=Re ¼ r=2. For any
Reynolds number in the range used in the present study,

i.e. 0 < Re < 3500, the asymptotic solution was reached

for M2 > 50Re (Fig. 6). In these cases, the core flow is

crossed by an almost axial electric current Jz=Re ¼
OðM�1Þ which closes through the top and the bottom
Fig. 6. Azimuthally velocity profiles for different Hartmann

numbers (Re ¼ 100) for insulating walls.
Hartmann layers of thickness M�1. Classically, the

dimensionless total electric current in these Hartmann

layers is on the order of unity. As a consequence in the

core flow, the tangential component of the electromag-

netic force vanishes. Then, in this region, the flow is

characterised by equilibrium between the viscous driving

stress from the disk at the top and the viscous braking at

the bottom wall. This helps to understand why the core

rotates at a velocity that is an exact average of the two

ends walls.

For perfectly conducting walls, k ! þ1; (Fig. 7) the

tangential component of the current density in the fluid

vanishes at the walls, and consequently the gradient of

the tangential component of the induced magnetic field

vanishes also, obh
on ¼ 0. Thus, close to both the rotating

disk at the top and the fixed disk at the bottom, the

current density and the magnetic field are parallel,

the electromagnetic force vanishes, and this prevents the

formation of the Hartmann layers. On the other hand

and due to the fact that the current density is parallel to

the magnetic field on both part of the cavity (at the top

and at the bottom), the current density in the core flow is

maintained also parallel to the magnetic field. In this

case, the electromagnetic forces vanish everywhere, ex-

cept at the vicinity of the lateral walls. Then under the

diffusion processes, the viscosity influence becomes

effective from the top to the bottom with a linear profile
Fig. 7. Electric current streamlines for perfectly conducting

walls (M ¼ Re ¼ 100).



Fig. 9. Evolution of the azimuthally velocity along the r ¼ 0:5

line, plotted for different values of the conductance ratio

(M ¼ Re ¼ 100).

Fig. 8. Evolution of the azimuthally velocity for different values

of the Hartmann number (Re ¼ 100) for perfectly conducting

walls.

Fig. 10. The azimuthally velocity versus r along the z ¼ 0:5

line, plotted for different values of the conductance ratio

(M ¼ Re ¼ 100).
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of the velocity distribution as in the classical Couette

flow (Fig. 8). This explains the monotonous structure of

the velocity field that varies linearly from the rotating

disk value at the top to the zero fixed disk value at the

bottom. For high values of the Hartmann number, the

expression for the tangential velocity becomes

Uh=Re ¼ rð1� z=2Þ: ð28Þ

The asymptotic solution is also reached for M2 > 50Re
(Fig. 8).

4.3. Solution with a magnetic field, arbitrary values of k

It is assumed that all walls (rotating and fixed) have

the same conductance ratio k. The analysis is performed

first for Re ¼ 100 andM ¼ 100, but for various values of

k (Fig. 9). For this swirling flow it is convenient to dis-

tinguish between the azimuthally component of the

velocity (0;Uh; 0) and the meridian ones (Ur; 0;Uz), the

secondary flow, that can be characterised by streamlines.

It is well known that for strong magnetic fields, the

flow splits into the following distinct sub-regions [14]:

1. The Hartman boundary layers adjacent to the rotat-

ing disk and the bottom wall with order (M�1) thick-

ness. They disappear when the walls are perfectly

conducting.

2. The core flow between the Hartmann layers where

the viscous effects are negligibly small.

3. The side layer, along the lateral wall of order (M�1=2)

thickness.

The azimuthally velocity profiles are strongly influ-

enced by the conductance ratio (Fig. 9) and exhibit an

almost linear variation versus the radius r (Fig. 10) ex-

cept near the lateral wall.
To interpret the numerical results, let us consider the

asymptotic situations characterised by high values of the

Hartmann number that allow neglecting the viscosity

influence in the flow far from the lateral walls. The

considered domain includes also the two Hartmann’s

layers at vicinity of the rotating and fix disks. The

momentum equation (11) for the azimuthally velocity

becomes

o2Uh

oz2
¼ �M2 obh

oz
: ð29Þ

According to Figs. 9–11, the solution for the velocity

profile, respecting the boundary conditions at the wall

(15)–(17), can be written in the form

Uh=Re ¼ r � ða � zþ bþ ð1� bÞ � e�M �zÞ: ð30Þ



Fig. 11. Characteristic profile of the velocity in the axial

direction. Both Hartmann layers are linked by the linear

velocity profile UC
h of the core flow.
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Here r � ða � zþ bÞ ¼ UC
h =Re (Fig. 11) is the linear

core velocity. The coefficients a and b are unknown

function of r and depend on the conductance ratio k.
Neglecting the radial derivative of the velocity in (29)

corresponds to neglect the radial component of the La-

placian of compared to the value of a. From Fig. 9 it can

be deduced

UC
h ðr; z ¼ 1Þ ¼ Re � r=2 : aþ b ¼ 1=2: ð31Þ

ForM � 1, a and b should, according to Fig. 9, have

the values

k ! 0 )
a ! 0

b ! 1=2

�
and

k ! þ1 )
a ! �1=2;

b ! 1:

�
ð32Þ

These values corresponding to the insulating and

perfectly conducting walls, will be taken as references for

the general semi-analytic solution calculated in the fol-

lowing.

Replacing the velocity distribution corresponding to

Eq. (30) in the asymptotic hydrodynamics equation (29)

gives after a simple integration

bh ¼ r � ð1� bÞ � Re

M
� e�M �Z þ bCh ðrÞ; ð33Þ

where bCh is the induced magnetic field in the core. It can

be determined from the induction equation (14) with Uh

and bh replaced by their semi-analytic forms (30) and

(33) in the core flow, as

a � Re � r ¼ � 1

r
o

or
r
obCh
or

� �
þ bCh

r2

)
a ¼ 0 : bCh ¼ rRe=2M ;

a 6¼ 0 : bCh ¼ � aRe

8
ðr3 þ C � rÞ:

8<
: ð34Þ
For a ¼ 0, the proposed expression for bCh takes into

account for the boundary condition for insulating walls

(bh ¼ 0). For k 6¼ 0, C is an unknown parameter which

depends on the boundary condition at the limit of the

core/Hartmann side layer. The essence of the parallel

layer is that it provides a current path, in addition to

that in the lateral wall. The parallel layer can be replaced

by a wall of M�1=2 conductance ratio. This consideration

leads to a modification of the thin wall condition which,

applied to bCh in the form

bCh ðrÞ ¼ �ðk þM�1=2Þ 1
r
oðrbCh ðrÞÞ

or
; ð35Þ

is now applied to the core induced magnetic field bCh .
This kind of boundary conditions is commonly used in

the literature [15] to allow the Hartmann and parallel

layers to be left unresolved by the numerical grid while

at the same time considering their joint effects due to the

closure of the electric currents in the Hartmann layer

and the wall. Putting (34) in (35), neglecting again the

radial derivative of a compared to a, and applied at

r ¼ 1�M�1=2 � 1 gives

a 6¼ 0 ) C ¼ � r2 � ðr þ 4 � ðk þM�1=2Þ
r þ 2 � ðk þM�1=2Þ

¼ � 1þ 4 � ðk þM�1=2Þ
1þ 2 � ðk þM�1=2Þ : ð36Þ

To close this semi-analytic solution, it is necessary to

express a and b by using the electric thin wall boundary

condition (23) at the rotating disk written according to

the expression (33) for bh

r � ð1� bÞ � Re

M
� aRe

8
ðr3 þ C � rÞ

¼ k � ð1� bÞ � r � Re ) b ¼ 1� a � ðr2 þ CÞ
8 � ðk þ 1=MÞ : ð37Þ

Using (31) we get the solution which verifies the

references values (32), i.e.

k 6¼ 0 )
a ¼ �1

2ð1� ðr2 þ CÞ=ð8 � ðk þ 1=MÞÞ ;

b ¼ 1� ðr2 þ CÞ=ð16 � ðk þ 1=MÞÞ
1� ðr2 þ CÞ=ð8 � ðk þ 1=MÞÞ :

8>>><
>>>:

ð38Þ

In Fig. 12 the semi-analytical solution for bh is

compared to the numerical results for the induced

magnetic field for two different values of k and for

Re ¼ M ¼ 100. The agreement for r < 0:6 is good, in

spite of the fact that the solution cannot be considered as

completely asymptotic. In conclusion, it appears that the

core induced magnetic field is constant along a vertical

axis (Fig. 13). Since, according to the group of Eq. (4),

the azimuthally component of the induced magnetic field

can be interpreted as the stream function of the induced

electric current, this explains why in the core, the electric



Fig. 12. Comparison of the semi-analytic theory for the core

induced magnetic field bCh with the numerical results, versus the

radial coordinate for z ¼ 0:5.

Fig. 13. Evolution of the induced magnetic field along r ¼ 0:5

line, plotted for different values of the conductance ratio

(M ¼ Re ¼ 100).

Fig. 14. Electric current streamlines for k ¼ 0:1 (Re ¼ M ¼
100). The iso-values of (�W) are indicated in the meridian plan

(r; z).
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lines are parallel to the z axis (see Figs. 13 and 14). The

comparison between the calculated values of a and b and

the numerical results for a large range of k is given on

Fig. 15; it show a very good agreement. On the other

hand, the solution exhibits relatively small variations

versus the distance from the rotation axis that according

to Fig. 9 depends on the conductivity ratio k. From these

results it can be noticed that, as in classical MHD
problems, the Hartmann boundary layer thickness d is

constant versus k and disappears when the walls are

perfectly conducting (a ¼ �1=2, b ¼ 1) corresponding

to k ¼ 1. The velocity distribution Uhðr; zÞ inside the

Hartmann layer is controlled by the intensity of the ra-

dial component of the electric current Jr, which is,

according to Eq. (4) and the boundary condition (23), of

Oðbh=kÞ. Consequently, the Lorentz’ force in the azi-

muthally direction decreases when k increases and the

viscosity diffuses the motion far from the disk. This ex-

plain the decreasing of the gradient of Uhðr; zÞ just under
the rotating disk versus the conductance ratio (Fig. 16)

which falls by 50% between k ¼ 0 and k ¼ 0:1.
The streamlines for the current density are repre-

sented on Fig. 14 for the intermediate value k ¼ 0:1, the
origin of the stream function is taken at the axis of

the cavity (r ¼ 0). For kP 10�3 all the lines enter the

rotating disk and close in the fluid media via the lateral

wall, with proportions which varies significantly with k
(Fig. 17). When k is high enough most of the lines come

back through the bottom wall (see Fig. 7 for k ¼ 1).

For kP 10�3 the electric flux through the rotating disk,

which is the total electric current It, is then given by

It ¼ DW ¼ Wr¼1 �Wr¼0 ¼ bhðr ¼ 1Þ: ð39Þ

Using (29) we find a relation between the gradient at

the rotating disk and the total electric current produced



Fig. 15. Comparison between numerical and analytical results of a and b for 0 < k6 10 at r ¼ 0:5 (Re ¼ M ¼ 100). An interpolation

for k ¼ 0 can be deduced from the curves and gives a ¼ 0 and b ¼ 1=2 for high M .

Fig. 16. Evolution of the average of the azimuthally velocity

gradient over the surface of the rotating disk versus the con-

ductance ratio k.

Fig. 17. Ratio of the electric current closing through the bot-

tom wall Ib, over the one closing by the lateral wall IL.
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oUh

oz
� It

k
: ð40Þ

Fig. 18 confirms this relation for k6 1, confirming

the fact that for small k most of the electric current is

created inside the Hartmann layers. By considering Eq.

(38) it can be observed that k and M�1 seems to play the

same role for the two disks, when k and M�1=2 play the

same role for the side layer. These parameters represent

respectively the electric contribution of the wall and of

the layers for the closure of the electric current. For the

same reason already mentioned for the parallel layer, the

inverse value of the Hartmann’s number can be inter-

preted as the conductance ratio coefficient of the Hart-

mann’s layer compared to the core flow. Thus, the wall

and the Hartmann’s layer can be interpreted as two
electric resistances in parallel. For very conducting walls

most of the electric current is produced by the rotating

disc, the Hartmann’s layer contribution becomes small

(k � M�1), and the relation (40) is no more valid. It can

be deducted from Eq. (36) that the coefficient b varies

from r=2 for the insulating case, to r for perfectly con-

ducting case (Fig. 9), and presents a strong variation

when k vary from k ¼ 0 to k ¼ 0:1. Then, the case of

very small conductance ratio cannot be approximated

by the insulating walls. This comes from the fact that,

for large value of the Hartmann’s number, the Hart-

mann’s boundary layer is also very small and conse-

quently the part of the electric current which closes itself

inside the layer is comparable to the part of the electric

current which closes inside the wall. For the same rea-

son, the perfectly conducting profile is almost reached



Fig. 18. The ratio of the total electric current to the average of

the azimuthally velocity gradient at the rotating disk (It=
oUh
oz
)

versus k.

Fig. 19. Evolution of the azimuthally velocity versus the

Hartmann number M for k ¼ 0:1.

Fig. 20. Comparison of the azimuthally velocity distribution

for two cases characterised by the same value of k þ 1=M
(Re ¼ 100).

Fig. 21. Ratio of the total electric current circulating in the

lateral wall Ip to that circulating inside the parallel layer IH at

midheight between the rotating disk and the bottom disk

(r ¼ l; z ¼ 1), versus k (M ¼ 100).
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for k > 0:5. Even for small conductance ratio (k ¼ 0:1)
the evolution of the azimuthally component of the

velocity versus the Hartmann’s number described by

Fig. 19 shows that the asymptotic solution for the

insulating wall represented on Fig. 6 cannot be reached

for M ¼ 100. That’s means that a significant part of the

electric current closes through the wall. On the other

hand, as demonstrated before, for asymptotic value of

the Hartmann’s number the conductance ratio k and

1=M plays the same role (see Eq. (38)). According to Fig.

20 which compare the effect of M and k for a given value
of the sum k þ ð1=MÞ, this property is well verified. Fig.

21 prove that the repartition of the electric current cir-

culating inside the parallel wall parallel layer is con-

trolled by the ratio between their own conductance ratio

k=M�1. Thus, the relation (35) is validated.

The meridian flow is now interpreted. Under the

condition of axial symmetry, it controls the heat and

mass transfer. The streamlines (Fig. 22) are plotted in

the plane (r; z) for different values of the conductance

ratio. It can be observed that the flow rate leads to be

more homogeneously distributed in the central region as

the conductance ratio increases. This is an other conse-

quence of the fact that, as explained before, when k is



Fig. 22. Velocity streamlines for different values of k (M ¼ Re ¼ 100).

Fig. 23. Evolution of the radial velocity along the r ¼ 0:5 line,

plotted for different values of the conductance ratio (M ¼
Re ¼ 100).

Fig. 24. Evolution of the radial velocity just under the rotating

disk, plotted along r ¼ 0:5 for small values of k. The velocity of

the jet increases with k, but slower than the core radial velocity.

When k ¼ 0:075 the jet structure has almost disappeared.
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increasing, the electric current lines become more and

more parallel to the applied magnetic field direction.

Another interpretation is that, when k is increasing, the

electric current density inside the liquid increases also.

Then all the deviation from a vertical motion of the flow

in the central region generates an electromagnetic

counter reaction opposite to this deviation that increases

when the electric current density increases. Conse-

quently, the fluid particles follow the imposed magnetic

lines regularly disposed. Due to the fact that the azi-

muthally velocity increases in the core flow when both

the magnetic field and the conductance ratio increases,

the radial velocity also increases and then the jet struc-

ture of the radial flow disappears and is replaced by a

regular curve on the full domain (Figs. 23 and 24).

Nevertheless, the radial component of the Lorentz force

Fr ¼ �M2 � Ur being opposite to the radial flow the ra-
dial velocity should be much smaller than the azimuth-

ally velocity. The main mechanism responsible of the

flow rate is the centrifugal force. In the upper Hartman’s

layer this force creates a high zone pressure at the

periphery of the rotating disk. This high pressure is

responsible for the closure of the flow through the side

layer and the bottom Hartmann’s layer. Out of the side

layer, the pressure is almost constant in the axial direc-

tion (Fig. 25); this property will be demonstrated later.

As explained before, the jet structure of the radial

flow just under the disk, directed towards the lateral

wall, disappears when the Hartmann number increases.

The maximum of the velocity V j
r depends on equilibrium

between the viscous and centrifugal force that gives

o2Ur

oz2
� U 2

h

r
) V j

r

d2
� U 2

h ) V j
r � b

M

� �2

: ð41Þ



Fig. 25. Distribution of the pressure for k ¼ 0:1.

Fig. 26. Evolution of the average of the radial pressure gradient
oP
or ðz ¼ 0) over the rotating disk versus the conductance ratio k.

Fig. 27. Evolution of the axial velocity along the r ¼ 0:5 line,

plotted for different values of the conductance ratio

(M ¼ Re ¼ 100).
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Thus, according to (41), V j
r should increase as

ðb=MÞ2.
The high pressure zone at the corner of the rotating

disk imposes a flow rate along the side wall. Charac-

terised by an Hartmann parallel layer corresponding to

an equilibrium between the vertical pressure gradient

and the viscosity when the radial pressure gradient is

controlled by electromagnetic and centrifugal forces.

The pressure decreases from the corner of the rotating

disk to the corner of the fixed disk.

In the bottom Hartmann layer the centrifugal force is

reduced and, under the influence of the radial pressure

gradient, the fluid moves toward the centre of the fixed

disk. This motion corresponds to an equilibrium be-

tween the electromagnetic and the pressure gradient

forces. The flow in this region has the same configura-

tion as under the rotating disk, its amplitude is a little

lower but conserves nevertheless the same order of

magnitude, as can be deduced from the simple relation

oP
or

� M2 � Ur � b2: ð42Þ

For a constant Hartmann number the radial pressure

gradient increase when b2 increases therefore when k
increases (Fig. 26). The axial (i.e. vertical) velocity is

connected to the radial velocity by the continuity

equation (14), its order of magnitude inside the Hart-

mann layers is

Uz �
Ur

M
; ð43Þ

and conserves the same order of magnitude in the core

flow. The distribution of the axial velocity as a function

of k is shown on Fig. 27. Note that Uz increases with k.
This is in accordance with the previous remark
explaining that k and 1=M play the same role and con-

sequently, Fig. 27 results are in accordance with Eq.

(43). By knowing the order of magnitude of Uz in the

core flow, it is easy to deduce the axial pressure gradient

necessary to maintain this velocity value. This can be

achieved from Eq. (12) by neglecting the viscosity

oP
oz

� U 2
z � U 2

r : ð44Þ

The axial pressure gradient is M2 smaller than the

radial one from 42. It can be concluded that in the core

flow the iso-pressure lines are almost vertical as shown

in Fig. 25. In all the cases the flow rate is at least

Hartmann time smaller than the ones generated by Ek-

man pumping (B0 ¼ 0). The magnetic field should de-

crease the heat and mass transfer from the rotating disk

to the cavity.



Fig. 29. Evolution of the critical Hartmann number Mk for

which the hydrodynamic vortex breakdown disappear versus

the Reynolds number.
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4.4. The vortex breakdown

The occurrence of vortex breakdown phenomena is a

typical property of this kind of flow and appears for

small Reynolds number (Re ¼ Oð103Þ) while it occurs at
higher value of Re and swirl number in aeronautics. In

laminar flows, Escudier [16] determinated experimen-

tally the conditions under which breakdown occurs. For

the case of the present paper the calculations show that

the vortex appears at Re � 1454 and disappears at

Re � 3020, while between Re � 1830 and 2283, there is

two vortex. This is in total accordance with Escudier.

The appearance of the vortex is not completely under-

stood.

The influence of the magnetic field on the vortex

breakdown phenomena has not been yet investigated.

But as it can be predicted, as usual, the magnetic field

tends to suppress the non-homogeneities and then it can

be expected a disappearance of the vortex for large

Hartmann number. Fig. 28 represents the critical Hart-

mann number Mk for which the principal vortex is

suppressed, for different values of the conductance ratio

k. The secondary vortex disappears for any value of Re
and k at M � 5. The evolution of the critical Hartmann

number, characterised by the curve Mk ¼ f ðReÞ, shows
an increasing as bðReÞ1=2 order. In other words the

vortex disappears for higher value in the case of con-

ducting wall than the insulating wall. An other surprise

is connected with the existence of an electric vortex

breakdown at the same location than the hydrodynamic

one Fig. 29. It seems that this electric vortex is not

correlated with the hydrodynamics one because

the modification of the electric stream lines due to the

hydrodynamics vortex is tangentially directed, when the

electric vortex is located in the meridian plan. This

electric vortex appears immediately for M > 0 and dis-

appears for critical Hartmann number M � Mk þ 5. It

exists only in the range of Re corresponding to the
Fig. 28. Shape of the hydrodynamic (W) and electric (rbh) vortex b
hydrodynamic one but is maintained for higher values of

M . No electric secondary vortex was found. These two

vortexes (hydrodynamics and electric) seem to have the

same origin. According to the induction equation (14),

the source of the creation of these vortex is due or

connected with the axial gradient of the azimuthally

velocity oUh
oz . This confirms the assumption of Brown and

Lopez [17] that argued that the change of sign of 1
r3 Uh

oUh
oz

near the axis of the cylinder is responsible for the

appearance of the vortex. More recently Gelfgat et al.

[18] have shown that the change of sign condition is

necessary but not enough.

4.5. The mass transfer

Corrosion studies have shown that the structural

materials (austenitic and martensitic steels) exposed to

high temperature Pb–17Li are subjected to corrosion.
reakdown for two different Hartmann number for Re ¼ 1750.



Fig. 30. Evolution of the total mass transfer through the

rotating disk versus M for different Reynolds number (k ¼ 0).
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From studies carried out in flowing lead–lithium alloy, it

is known [19] that corrosion rate of martensitic steels,

increases from 21 to 93 lmyr�1 when the alloy velocity

increases from 0.019 to 0.18 m s�1. This constatation

leads us to think that the corrosion process is controlled

by the near-wall hydrodynamic. It has to be noted that

the knowledge of the diffusion coefficient as well as the

solubility of the dissolved species in the liquid is essential

for the modelling. Experiences with steel rotating disk

are planed, different situation with different velocity and

different magnitude of magnetic field will be tested. The

diffusion coefficient D of metallic element could be de-

ducted from these experiences. A precise modelling of

mass transfer is nevertheless necessary for a correct

interpretation of the experimental results. For the pres-

ent study the Schmidt number (Sc ¼ m=D) is 1000, the

diffusion layer thickness is then at least one order of

magnitude smaller than the hydrodynamical one. A

supplementar grid refinement is then necessary to define

correctly the concentration boundary layers.

The equation of the concentration of metallic element

is computed over all the domain:

Ur
oC
or

þ Uz
oC
oz�

¼ 1

Sc
DC: ð45Þ

The boundary conditions are C ¼ 1 at the rotating disk,

C ¼ 0 for the other walls, and oC
or ¼ 0 at the axis.

The mass flux is defined through the classical Sher-

wood number

ShðrÞ ¼ FluxðrÞ
ScCref

;

where

FluxðrÞ ¼ � 1

Sc
oC
oz

and Cref ¼ 1: ð46Þ
4.5.1. Influence of the Reynolds number

The mass transfer in this case have been deeply

investigated. Our calculations give for the total flow of

matter from the rotating disk:

ShðRÞ ¼ 2:6ðReÞ1=2ðScÞ1=3: ð47Þ

This is in good agreement with what can be found in

the literature [20].
4.5.2. Influence of the Hartmann number and conductance

ratio

Studies on the effects of an external magnetic field on

the mass transfer can be found in literature. They are

mostly connected with the crystal growth in which the

transfer is not controlled only by the conduction and the

convection. In these studies there is not equivalent as-

pects concerning the influence of the conductance ratio

on the mass transfer processes.
In the particular conditions of the present study the

magnetic field action results in a decreasing of the forced

convection, then the mass transfer is expected to be

much smaller than in the case without magnetic field.

This cannot be take as a general conclusion. In other

circumstance the magnetic field action on hydro-

dynamics could improve on the contrary the mass

transfer rate. Fig. 30 represents the ratio between the

Sherwood number in presence of magnetic field and

insulating wall, over the one without magnetic field. This

ratio can be expressed on the form:

ShðMÞ=ShðM ¼ 0Þ � f ðM ;ReÞe�M=Re ð48Þ

with 0:96 f ðM ;ReÞ < 1:06. No analytic general expres-

sion for f ðM ;ReÞ was found. As expected the curves

decrease exponentially with M . For small ReðRe � M2Þ
the magnetic field seems to increase a little bit the mass

transfer. For Re ¼ 1750 the correlation (48) gives

ShðM ¼ 25Þ=ShðM ¼ 0Þ � 1:04. This can be only asso-

ciated with an increasing of the flow rate in the

boundary layer corresponding to an improvement of the

flow rate which supply the boundary layer. That means

that, since Q � dðRe;MÞUr, the product d:Ur is

improving for small value of M . This can be justified by

the following simple explanation. The radial Lorentz

force (�M2Ur) act in the same direction that the viscous

force inside the rotating disk boundary layer, which is

characterised roughly by the equilibrium:

o2Ur

oz2
�M2Ur �

U 2
h

r
ð49Þ

consequently, at the first order:

Ur

d2
�M2Ur � U 2

h ð50Þ

assuming that for small MðM2 � RÞe, Uh � Re, the

boundary layer depth is ðReÞ�1=2
. Using (50), the flow

rate can be expressed on the form:



Fig. 31. Evolution of the total mass transfer from the rotating

disk versus k for different Reynolds number (M ¼ 100).
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Q � dUr �
Re

ð1�M2=ReÞ : ð51Þ

This relation, found for very small M , justify the

increasing of the flow rate for an increasing of the

Hartmann number.

The variation of Sh versus k is given in Fig. 31 for

MHD case (M2 > Re), the following relation is found:

ShðkÞ=Shðk ¼ 0Þ � ð1þ 2bÞ=2: ð52Þ

Finally:

Sh ¼ ð1þ 2bÞe�M=ReShðM ¼ 0Þ=2: ð53Þ

As can be observed the mass transfer is greatly en-

hanced when the electrical conductivity of the walls in-

creases. This is because the dominant mode of transfer

here is convection and the velocities which are respon-

sible for this transfer are progressively dampened as one

changes from the fully conducting case to the totally

insulating case.
Fig. 32. Characteristic situations versus the conductance ratio

and the Hartmann number.
5. Conclusions

Corrosion experiments in liquid Pb–17Li under a

magnetic field are planned with flows generated in a

cylindrical cavity by a rotating disk. In order to correlate

mass transfer and hydrodynamics in such configuration,

the velocity distribution has to be known. A numerical

analysis based on the induced magnetic field and using a

thin wall hypothesis has been carried out to predict the

flow. The calculations for large values of the conduc-

tance ratio k indicate that the hydrodynamics is largely

controlled by this factor. Even for very small values of k,
the wall cannot be assimilated to be insulating case when

the Hartmann number is high enough when, even for

k < 1 (k > 0:5 for Re ¼ 100), the flow is very close to the
perfectly conducting case (k ¼ 1). This can be easily

explained by the sharing of the electric current between

the walls, and the Hartmann and parallel layers.

Depending on the thickness of the wall (taken into ac-

count by the conductivity ratio) and the thickness of the

boundary layers (1=M and 1=M1=2 plays the role of the

conductance ratios for the two layers), the electric cur-

rent closes preferentially inside the wall or inside the

layers. For large values of M , the two layers are very

small and then the current closes preferentially in the

walls even if they are very thin. In conclusion, the two

products kM and kM1=2 control the situation. When

kM � 1 the two disks (rotating and fix) can be consid-

ered as insulating and in the same way, when kM1=2 � 1

the lateral walls can also be considered as insulating.

Consequently an intermediate situation is possible with

the two disks considered as perfectly conducting while

the lateral walls are considered as insulating. Fig. 32

summarizes the different situations.

The azimuthally velocity is classically organized into

core, Hartmann layers, and a parallel layer. The core

flow exhibits a linear velocity variation in the axial

direction, with a slope that depends strongly on k. The
boundary layers thickness is constant with k, but the

azimuthally velocity gradient at the rotating disk (and

thus the mass transfer process) varies considerably with

this factor. The electric current lines are parallel to the

imposed magnetic field in the core flow, and at the

vicinity of both disks for the perfectly conducting case.

Thus, the vanishing of the Lorentz force explains why

the meridian flow rate is stronger for high k.
Numerical simulations of mass transfer, for high

Schmidt number, from the rotating disk in laminar flow

show that magnetic field changes significantly the phe-

nomena. Although the presence of the magnetic field in
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the present geometry damp the mass transfer, in the case

of the ducts of the blanket for the fusion reactor, the

mass transfer could be increased due to a strong modi-

fication of the hydrodynamics inside the duct. This is

characterised by a relatively high velocity at the vicinity

of the wall and lower velocity in the core flow corre-

sponding to an improvement of the mass transfer that is

controlled by the near-wall hydrodynamics. The objec-

tive of the experimental results that will follow this study

will be only to control the dependence between the mass

transfer rates with the modification of hydrodynamics of

the flow. The electric properties of the walls, through the

conductance ratio k, play a significant role in the mass

transfer. So, if the corrosion processes is controlled by

the near walls hydrodynamics, the conductance ratio

of the walls is an important factor which cannot be

neglected.
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